Package: rubias 0.3.4
rubias: Bayesian Inference from the Conditional Genetic Stock Identification Model
Implements Bayesian inference for the conditional genetic stock identification model. It allows inference of mixed fisheries and also simulation of mixtures to predict accuracy. A full description of the underlying methods is available in a recently published article in the Canadian Journal of Fisheries and Aquatic Sciences: <doi:10.1139/cjfas-2018-0016>.
Authors:
rubias_0.3.4.tar.gz
rubias_0.3.4.zip(r-4.5)rubias_0.3.4.zip(r-4.4)rubias_0.3.4.zip(r-4.3)
rubias_0.3.4.tgz(r-4.5-x86_64)rubias_0.3.4.tgz(r-4.5-arm64)rubias_0.3.4.tgz(r-4.4-x86_64)rubias_0.3.4.tgz(r-4.4-arm64)rubias_0.3.4.tgz(r-4.3-x86_64)rubias_0.3.4.tgz(r-4.3-arm64)
rubias_0.3.4.tar.gz(r-4.5-noble)rubias_0.3.4.tar.gz(r-4.4-noble)
rubias_0.3.4.tgz(r-4.4-emscripten)rubias_0.3.4.tgz(r-4.3-emscripten)
rubias.pdf |rubias.html✨
rubias/json (API)
NEWS
# Install 'rubias' in R: |
install.packages('rubias', repos = c('https://eriqande.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/eriqande/rubias/issues
- alewife - Microsat data from alewife herring reference populations
- blueback - Microsat data from blueback herring reference populations
- chinook - SNP data from chinook reference populations
- chinook_collection_levels - A vector that gives a desired sort order of the chinook collections
- chinook_mix - SNP data from Chinook salmon taken in May/August 2015 from California fisheries
- chinook_repunit_levels - A vector that gives a desired sort order of the chinook repunits
- perfect_chinook - Perfect-assignment genetic data for chinook.
- perfect_chinook_mix - Perfect-assignment mixture genetic data for chinook.
- sim_spec_examples - List of example ways of specifying repunit and collection quantities in simulations
- small_chinook_mix - Small sample of SNP data from Chinook salmon taken in May/August 2015 from California fisheries
- small_chinook_ref - SNP data from selected chinook reference populations
Last updated 1 years agofrom:bbb1753cfa. Checks:5 OK, 7 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 10 2025 |
R-4.5-win-x86_64 | OK | Mar 10 2025 |
R-4.5-mac-x86_64 | OK | Mar 10 2025 |
R-4.5-mac-aarch64 | OK | Mar 10 2025 |
R-4.5-linux-x86_64 | OK | Mar 10 2025 |
R-4.4-win-x86_64 | NOTE | Mar 10 2025 |
R-4.4-mac-x86_64 | NOTE | Mar 10 2025 |
R-4.4-mac-aarch64 | NOTE | Mar 10 2025 |
R-4.4-linux-x86_64 | NOTE | Mar 10 2025 |
R-4.3-win-x86_64 | NOTE | Mar 10 2025 |
R-4.3-mac-x86_64 | NOTE | Mar 10 2025 |
R-4.3-mac-aarch64 | NOTE | Mar 10 2025 |
Exports:%>%a_freq_listallelic_listassess_pb_bias_correctionassess_reference_looassess_reference_mcavg_coll2correctRUbootstrap_rhocheck_known_collectionscheck_refmixclose_matching_samplescount_missing_datacustom_pi_priordirch_from_allocationsdirch_from_countsgeno_logLgeno_logL_ssqgprob_sim_gcgprob_sim_gc_missinggprob_sim_indgsi_em_1gsi_mcmc_1gsi_mcmc_fbHasselman_sim_collsinfer_mixturelist_diploid_paramsmixture_drawmodify_scaled_likelihoods_for_known_mixture_fishper_locus_means_and_varsrcpp_close_matchersrcpp_indiv_specific_logl_means_and_varsrcpp_per_locus_loglsread_gsi_simref_and_mix_pipelinereference_allele_countsround2samp_from_matself_assignsimulate_random_samplestcf2longtcf2param_listtidy_mcmc_coll_rep_stufftidy_mcmc_pofztidy_pi_traceswrite_gsi_sim_mixturewrite_gsi_sim_reference
Dependencies:bitbit64clicliprcpp11crayondplyrfansigenericsgluegtoolshmslifecyclemagrittrpillarpkgconfigprettyunitsprogresspurrrR6RcppRcppParallelreadrrlangstringistringrtibbletidyrtidyselecttzdbutf8vctrsvroomwithr
An Explanation of the Underlying Data Structures in rubias
Rendered fromrubias-underlying-data-structures.Rmd
usingknitr::rmarkdown
on Mar 10 2025.Last update: 2018-03-30
Started: 2018-01-24
An Overview of rubias Usage
Rendered fromrubias-overview.Rmd
usingknitr::rmarkdown
on Mar 10 2025.Last update: 2021-01-15
Started: 2018-01-24
Using the Fully Bayesian Model in rubias
Rendered fromrubias-fully-bayesian.Rmd
usingknitr::rmarkdown
on Mar 10 2025.Last update: 2019-06-10
Started: 2019-06-09