
Package: gscramble (via r-universe)
August 31, 2024

Type Package

Title Simulating Admixed Genotypes Without Replacement

Version 1.0.1.9000

Description A genomic simulation approach for creating biologically
informed individual genotypes from empirical data that 1)
samples alleles from populations without replacement, 2)
segregates alleles based on species-specific recombination
rates. 'gscramble' is a flexible simulation approach that
allows users to create pedigrees of varying complexity in order
to simulate admixed genotypes. Furthermore, it allows users to
track haplotype blocks from the source populations through the
pedigrees.

License CC0

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Depends R (>= 3.5.0)

Imports dplyr, ggplot2, glue, magrittr, purrr, readr, rlang, stats,
stringr, tibble, tidyr

Suggests cowplot, knitr, rmarkdown, tidyverse

VignetteBuilder knitr

URL https://github.com/eriqande/gscramble

BugReports https://github.com/eriqande/gscramble/issues

Repository https://eriqande.r-universe.dev

RemoteUrl https://github.com/eriqande/gscramble

RemoteRef HEAD

RemoteSha 752d7cf83c0bd3943486b641ee072700d99dd28e

1

https://github.com/eriqande/gscramble
https://github.com/eriqande/gscramble/issues


2 check_chrom_lengths

Contents

check_chrom_lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
check_gsp_for_validity_and_saturation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
check_pedigree_for_inbreeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
computeQs_from_segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
create_GSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
drop_segs_down_gsp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
example_chrom_lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
example_segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Geno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
gscramble2newhybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
gscramble2plink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
GSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
gsp2dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
gsp3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
gsp4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
GSP_opts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
I_meta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
mat_scramble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
M_meta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
perm_gs_by_pops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
plink2gscramble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
plink_map2rec_rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
plot_simulated_chromomsome_segments . . . . . . . . . . . . . . . . . . . . . . . . . 23
prep_gsp_for_hap_dropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
rearrange_genos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
recomb_point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
RecRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
renumber_GSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
RepPop1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
RepPop4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
seg2tib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
segments2markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
segregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
sim_level_founder_haplos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
xover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Index 39

check_chrom_lengths check that the chromosome lengths are acceptable given recombina-
tion rates



check_gsp_for_validity_and_saturation 3

Description

For ’gscramble’ to work properly, all variant positions on a chromosome (found in the meta data
file) must be equal to or less than the total chromosome length found in the recombination map.
In other words, the variant positions must be within the the total length of each chromosome. The
check_chrom_lengths() function checks that variant positions on each chromosome do not exceed
the total chromosome length from the recombination map. Input files for the function include 1)
the meta data file which contains 3 columns (the chromosome ID as a character, the position of
the variant as a numeric, and the name of the variant as a character) and 2) the recombination map
which contains 5 columns (the chromosome ID as a character, the total length of the chromosome
as a numeric, the starting position of the recombination bin as a numeric, the last position of the
recombination bin as a numeric, and the recombination probability for the given bin as a numeric).

Usage

check_chrom_lengths(meta, rec)

Arguments

meta a tibble with meta data for the genotype data. It must consist of the columns
(chrom, pos, variant_id).

rec a tibble with recombination map information for your study species.It must con-
tain 5 columns (chrom, chrom_len, start_pos, end_pos, rec_prob).

Value

This function will return a message for each chromosome stating whether the chromosome lengths
are accurate

Examples

# The example uses the built in datasets M_meta and RecRates
# to use the check_chrom_lengths() function

check_chrom_lengths(M_meta,RecRates)

check_gsp_for_validity_and_saturation

Check that GSP does not reuse genetic material and yet uses all of it

Description

These conditions can be checked for a GSP with no inbreeding loops simply by ensuring that the
amount of genetic material coming into each individual is the same as the amount going out (either
as segregated gametes or as samples). If the amount of material coming out of any individual in
the GSP is greater than the amount coming in, then an error is thrown. If the amount coming out
is less than the amount coming in, then a warning about the GSP is thrown. Messages printed via
message() and warning() indicate which individuals in the GSP are problematic. All problematic
individuals are listed before an error is thrown with stop().



4 check_pedigree_for_inbreeding

Usage

check_gsp_for_validity_and_saturation(GP)

Arguments

GP A gsp in list format as produced by the function prep_gsp_for_hap_dropping().
See the documentation for the return object of prep_gsp_for_hap_dropping()
for a description.

Value

This function does not return anything.

Examples

# get the 13 member pedigree in tibble form as the package
# and turn it into a list
GP <- prep_gsp_for_hap_dropping(GSP)

# check it. (This passes)
check_gsp_for_validity_and_saturation(GP)

## The following will show a failure, so we wrap it in tryCatch
## so CRAN check does not flag it as a problem.
# Read in a gsp with errors and then make sure all the
# error in it are caught
bad <- readr::read_csv(system.file("extdata/13-member-ped-with-errors.csv", package = "gscramble"))

# check_gsp_for_validity_and_saturation() is called internally from
# within prep_gsp_for_hap_dropping(), after creating a list-from GSP.
# This will show the error produced by check_gsp_for_validity_and_saturation().
badL <- tryCatch(

prep_gsp_for_hap_dropping(bad),
error = function(x) 0,
warning = function(x) 0

)

check_pedigree_for_inbreeding

Check the a GSP (in prepped list format) for inbreeding loops

Description

After a GSP has been passed through prep_gsp_for_hap_dropping() it is in a list format with
the individuals ordered in such a way that it should be easy to check for any inbreeding loops in it
(which are not allowed!). This version uses a simple recursive approach to compute the ancestry
vector for each individual, and it detects inbreeding by the occurrence of the same ID in the ancestry



check_pedigree_for_inbreeding 5

vector more than once. This might be slow on large pedigrees, but for most that people would use,
this should be fine.

Usage

check_pedigree_for_inbreeding(GP)

Arguments

GP A gsp in list format as produced by the function prep_gsp_for_hap_dropping().
See the documentation for the return object of prep_gsp_for_hap_dropping()
for a description.

Details

Note that the ancestry vector produced by this is not ordered the way the ancestry vectors are in my
package CKMRpop—for simplicity I just get a list of ancestors in whatever order they happen to
be reached.

Value

This function does not return anything. It throws an error via stop() if inbreeeding loops are found
in the pedigree. Before throwing that error it lists the individuals with repeated occurrences in their
ancestry vectors via the message() function.

Examples

# get the 13 member pedigree in the data object GSP and
# turn it into a list
GP <- prep_gsp_for_hap_dropping(GSP)

# check it for inbreeding. (There is none)
check_pedigree_for_inbreeding(GP)

## This one will fail, so we wrap it in tryCatch so CRAN
## check doesn't find it a problem.
# To see what happens if there are inbreeding loops, make some
GP_inbred <- GP
# make 12 be inbred trough individual 6
GP_inbred$`12`$par1$par = "13"
# make 8 inbred (because both of its founder parents are the same!)
GP_inbred$`8`$par2$par = "4"

# now try that:
tryCatch(

check_pedigree_for_inbreeding(GP_inbred),
error = function(x) 0,
warning = function(x) 0

)



6 computeQs_from_segments

computeQs_from_segments

return the admixture fractions of sampled individuals

Description

This operates on the output of segregate to add up the lengths of all the segments segregated to
different individuals to thus compute the admixture fractions of each sampled individual.

Usage

computeQs_from_segments(S, check_total_length = TRUE)

Arguments

S the tibble output from segregate

check_total_length

TRUE means it checks the total genome length in each individual to make sure
it checks out.

Value

This function returns a tibble with the following columns:

• gpp: the genomic simulation pedigree within which the individual sample was simulated.

• index: the index which gives which instance of the GSP the sample is from

• ped_sample_id: the id number of that the sampled individual had in the genomic simulation
pedigree.

• samp_index: the index of the sample taken. Some individuals in some genomic simulation
pedigrees can produce more than one sample. This number tells you which sample it is.

• pop_origin: the "pedigree" population of origin of the segments that contributed to the
group_length. These are the simple "A", "B", "C", etc. designations given in the genomic
simulation pedigree.

• group_origin: Which group of samples the segments contributing to the group_length
originated from. These are the groups of samples that were mapped onto the simple pedigree
pop_origins by the reppop request.

• group_length: the total length of segments from this group in this individual in this reppop
index from this gpp (in bases).

• tot_length: the total number of bases from all origins carried by this individual.

• admixture_fraction: the fraction of all bases in the simulated individual that originate from
the group in group_origin.



create_GSP 7

Examples

#### Get output from segregate to use as input ####
# We construct an example here where we will request segregation
# down a GSP with two F1s and F1B backcrosses between two hypothetical
# populations, A and B.
gsp_f1f1b <- create_GSP("A", "B", F1 = TRUE, F1B = TRUE)

# We will imagine that in our marker data there are three groups
# labelled "grp1", "grp2", and "grp3", and we want to create the F1Bs with backcrossing
# only to grp3.
reppop <- tibble::tibble(

index = as.integer(c(1, 1, 2, 2)),
pop = c("A", "B", "A", "B"),
group = c("grp3", "grp1", "grp3", "grp2")

)

# combine those into a request
request <- tibble::tibble(

gpp = list(gsp_f1f1b),
reppop = list(reppop)

)

# now run it through segregate()
set.seed(5) # just for reproducibility in example...
simSegs <- segregate(request, RecRates)

#### Now we can run those through computeQs_from_segments() ####
Qs <- computeQs_from_segments(simSegs)

Qs

create_GSP Create a GSP from user inputs about what type of hybrids from which
populations to create hybrids

Description

This function allows the user to choose two populations and create a GSP input for ’gscramble’. The
input requires two different population IDs of class character as well as at least one TRUE statement
for one of the hybrid parameters (F1, F2, F1B, F1B2). The GSP will indicate hybrid individuals that
will be sampled based on which F1, F2, F1B, and F1B2 parameters are TRUE. F1= TRUE means
F1 hybrids will be sampled. F2=TRUE means F2 hybrids will be sampled. F1B2=TRUE means F1
backcross hybrids will be sampled. F1B2=TRUE means F1 backcross 2 hybrids will be sampled.
Default setting for these parameters is FALSE. The function then outputs a GSP in tibble format
that can be used for other functions in ’gscramble’ including check_pedigree_for_inbreeding()
and prep_gsp_for_hap_dropping().



8 create_GSP

Usage

create_GSP(
pop1,
pop2,
F1 = FALSE,
F2 = FALSE,
F1B = FALSE,
F1B2 = FALSE,
AllowSinglePop = FALSE

)

Arguments

pop1 character name for population 1

pop2 character name for population 2

F1 logical indicating whether you would like to have sampled F1 hybrids in the
output.

F2 logical indicating whether you would like to have sampled F2 hybrids in the
output.

F1B logical indicating whether you would like to have sampled F1 backcross hybrids
in the output.

F1B2 logical indicating whether you would like to have sampled F1 backcross 2 hy-
brids in the output.

AllowSinglePop Set to true if you want all the founders from just a single population. This has
some use cases...

Value

This function returns a GSP in tibble format with the user argument for pop1 and pop2 autopopu-
lated in the hpop1 and hpop2 columns.

Examples

# create a GSP that generates hybrids and samples F1s and F1B's from pops A and B
gsp <- create_GSP("A", "B", F1 = TRUE, F1B = TRUE)

#create a GSP that generates hybrids and samples F1s, F2s, F1Bs, F1B2s from pops A and B
gsp <- create_GSP("Pop_X", "Pop_Z", F1 = TRUE, F2 = TRUE, F1B = TRUE, F1B2 = TRUE)



drop_segs_down_gsp 9

drop_segs_down_gsp High level function for dropping segments down a GSP

Description

This one asks for the number of reps to do, and it also automatically does it over chromosomes and
returns the results in a nice tidy tibble.

Usage

drop_segs_down_gsp(GSP, RR, Reps)

Arguments

GSP the pedigree to use for the simulation, in the format of the package data GSP.

RR the recombination rates in the format of the package data RecRates

Reps the number of times to do the simulation. Different replicates are denoted by the
index column in the output tibble.

Value

The output from this function is a tibble. Each row represents one segment of genetic material
amongst the sampled individuals from the genomic permutation pedigrees. The columns give in-
formation about the provenance and destination of that segment as follows. Each segment exists
in one of the samples (samp_index) from a sampled individual with a ped_sample_id in a given
samp_index within the individual. Further, it is on one of two gametes (gamete_index) that seg-
regated into the individual, and it came from a certain founding population (pop_origin). And,
of course, the segment occupies the space from start to end on a chromosome chrom. Finally,
the index of the founder haplotype on the given gpp that this segement descended from is given
in rs_founder_haplotype which is short for "rep-specific founder haplotype". This final piece of
information is crucial for segregating variation from the individuals in the Geno file onto these seg-
ments. The gamete_segments column is a list column with duplicated entries for each chromosome
in an individual.

Examples

simSegs <- drop_segs_down_gsp(GSP, RecRates, 4)



10 example_segments

example_chrom_lengths Lengths of the three chromosomes used in the example data set

Description

These are for the example of how to use plink_map2rec_rates().

Format

A tibble with two columns: chrom and bp.

Source

These lengths were taken from the maximal values in Tortereau, Flavie, et al. "A high den-
sity recombination map of the pig reveals a correlation between sex-specific recombination and
GC content." BMC genomics 13.1 (2012): 1-12. It is available for download from https://
static-content.springer.com/esm/art%3A10.1186%2F1471-2164-13-586/MediaObjects/12864_
2012_4363_MOESM1_ESM.txt. After downloading the data were processed to remove inconsisten-
cies with the marker data set used for M_meta and Geno.

example_segments Example of a segments tibble

Description

This is the Segments object from the ’gscramble’ tutorial. It is included as a data object to use in
the example for the function plot_simulated_chromosome_segments().

Format

A tibble like that produced by the segregate() function.

Source

Made from package functions

https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-13-586/MediaObjects/12864_2012_4363_MOESM1_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-13-586/MediaObjects/12864_2012_4363_MOESM1_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-13-586/MediaObjects/12864_2012_4363_MOESM1_ESM.txt


Geno 11

Geno Genotype matrix of 78 individuals and 100 SNP markers

Description

This dataset represents 3 distinct populations of feral swine in the United States. To make this
dataset computationally efficient, only 3 chromosomes (12, 17, 18) from the pig genome were used.
Further, loci were reduced to the 100 most informative loci for distinguishing the 3 populations.
Each row of the genotype matrix includes the genotypes for a single individual. The genotype
matrix is in a standard "two-column" format for a diploid species where two adjacent columns make
up a locus and each column of a locus contains an allele. Genotype data is stored in the character
class. Missing data is represented by NAs. Individual IDs and population assignment information
can be found in I_meta Locus and chromosome information for genotypes can be found in M_meta

Format

A character matrix. Each row represents an individual and columns contain the genotypes for
individuals in a "two-column" format where two adjacent columns make up a locus with an allele
in each column.

Source

USDA-APHIS-WS-National Wildlife Research Center Feral Swine Genetic Archive

gscramble2newhybrids Convert ’gscramble’ output to newhybrids format

Description

This function turns character-based alleles into integers and writes the necessary headers, etc. It
preferentially uses the "id" column if it exists in M$ret_ids. Otherwise it uses the indiv column
for the sample names.

Usage

gscramble2newhybrids(
M,
M_meta,
z = NULL,
s = NULL,
retain = NULL,
outfile = tempfile()

)



12 gscramble2newhybrids

Arguments

M the output from segments2markers() from ’gscramble’. This could have an
added id column on it, which will then be used for the sample names.

M_meta the Marker meta data file.

z A vector of length two. The values are regular expressions that the sample names
that you want to have -z 0 or -z 1 should match. For example c("SH", "CCT")
means any sample matching "SH" would get z0 and any sample matchine "CCT"
would get z1.

s a single regular expressions that matches individuals that should be given the -s
option. For example "SH|CCT"

retain a vector of loci to retain.

outfile path to the file to write the newhybrids data set to. For CRAN compliance, this
is, by default, a temp file. But you can change it to be anything valid.

Details

It allows you to set the -s and -z through some regular expression mapping.

This function relies a lot on some tidyverse functions for pivoting, etc. As such, it is not intended
for data sets with tens of thousands of markers. You oughtn’t be using NewHybrids with so many
markers, anyway!

Value

A list with three components:

• outfile: outfile name of saved data.

• genos: Genotypes

• allele_names: Allele names.

Examples

# get output from segments2markers():
example("segments2markers")
# copy that result to a new variable
M <- s2m_result

# then run it
gscramble2newhybrids(M, M_meta)



gscramble2plink 13

gscramble2plink Write ’gscramble’ I_meta, M_meta, and Geno to a plink file

Description

Writes genetic and individual information in ’gscramble’s I_meta, M_meta, and Geno like objects
into a uncompressed plink .ped and .map files.

Usage

gscramble2plink(I_meta, M_meta, Geno, prefix = tempfile())

Arguments

I_meta a tibble of individual meta data with at least the columns of group and indiv.

M_meta a tibble of marker meta data with at least the columns of chrom, pos, and
variant_id.

Geno a character matrix of genotypes. Num-indivs rows and num-markers * 2 columns,
with missing denoted denoted by NA.

prefix the file path and prefix into which to write out the files

Value

Returns TRUE if successful.

Examples

gscramble2plink(I_meta, M_meta, Geno)

GSP Example Genomic Simulation Pedigree, GSP, with 13 members

Description

A GSP is a pedigree with no inbreeding which specifies This is a relatively complex GSP. The tibble
GSP specifies its structure using the following columns:

• ind: the numeric identifier for the individual specific to the row (we will call that the "focal
individual").

• par1: numeric identifier of the first parent of the focal individual. Must be NA for pedigree
founders.

• par2: numeric identifier of the second parent of the focal individual. Must be NA for pedigree
founders.



14 gsp2dot

• ipar1: the number of gametes that will be incoming from the first parent to the focal individ-
ual. Must be NA for pedigree founders. Note that this must be equal to ipar2.

• ipar2: the number of gametes that will be incoming from the second parent to the focal
individual. Must be NA for pedigree founders. Note that this must be equal to ipar1.

• hap1: character name for the first haplotype of a founder (if the focal individual is a founder).
Must be NA for pedigree non-founders.

• hap2: character name for the second haplotype of a founder (if the focal individual is a
founder). Must be NA for pedigree non-founders.

• hpop1: character ID of the population from which haplotype 1 comes from. Must be NA for
pedigree non-founders.

• hpop2: character ID of the population from which haplotype 2 comes from. Must be NA for
pedigree non-founders.

• sample: character ID for the sample from the focal individual. NA if no samples are taken
from the focal individual, and must be NA for any pedigree founders.

• osample: numeric value giving the number or samples that are taken from this individual.
osample must be less than or equal to ipar1 and ipar2. If osample is less than ipar1 and
ipar2, then some gametes must get passed on to descendants of the focal individual.

Format

A tibble

Details

The CSV version of this is in extdata/13-member-ped.csv.

Source

Created by the developers.

gsp2dot Write a dot file to represent a genome simulation pedigree

Description

This takes the tibble representation of a GSP and writes it to a dot file to be rendered into a graph
using the dot command from the GraphViz package. You can easily get GraphViz using Miniconda
or check out the GraphViz downloads page. If you have the dot executable in your PATH, then dot
will be run on the dot file and an SVG and a PNG image of the graph.



gsp2dot 15

Usage

gsp2dot(
g,
path = file.path(tempfile(), "file_prefix"),
edge_label_font_size = 18,
indiv_node_label_font_size = 18,
sample_node_label_font_size = 18,
haplo_origin_colors = c("lightblue", "orange", "blue", "green", "cadetblue",
"dodgerblue3", "darkolivegreen1", "forestgreen", "lightpink", "red2", "sandybrown",
"orangered", "plum3", "purple4", "palegoldenrod", "peru"),

sam_node_color = "violet",
sample_edge_label_color = "purple",
parent_edge_label_color = "red"

)

Arguments

g a GSP tibble.

path the path to the file prefix to use (to this will be appended .dot, and .png or
.svg, if dot is on your system). By default these paths are in a temporary di-
rectory, because packages are not allowed to write to user home directories by
default. Supply a path with prefix, like my_path/myfile to get the output file
mypath.myfile.dot

edge_label_font_size

The font size of the number annotations along the edges.
indiv_node_label_font_size

the font size of the labels for the individual nodes
sample_node_label_font_size

the font size of the labels for the individual nodes
haplo_origin_colors

The colors for different origins of haplotypes. By default there are only sixteen.
If you have more populations that founders may come from, you should provide
a vector with more than 16 colors.

sam_node_color The color given to the sample nodes in the GSP.
sample_edge_label_color

Color for the numeric annotations along the edges leading to samples.
parent_edge_label_color

Color for the numeric annotations along the edges leading from parents to off-
spring.

Details

It can be tricky knowing whether or not R or Rstudio will read your Unix rc files and populate your
paths appropriately. If you want to test whether dot in on your PATH as it is when running under
R, try: Sys.which("dot") at your R console. If that returns an empty string, (""), then you need
to do something else to make sure R can find dot on your system.



16 gsp4

Value

A vector of file paths. The first is the path of the dot file that was produced. The second and third
are only present if dot was found in the PATH. They are the paths of the png and svg files that were
produced.

Examples

gsp_file <- system.file("extdata/13-member-ped.csv", package = "gscramble")
g <- readr::read_csv(gsp_file)

paths <- gsp2dot(g)
paths

gsp3 Tibble holding specification for a 5 member genomic permutation
pedigree.

Description

This has 3 founders

Format

A tibble

Details

For details on the columns, see the documentation for GSP.

Source

Created by the developers.

gsp4 Tibble holding specification for a 7 member genomic permutation
pedigree.

Description

This has 4 founders, each one from a different population, and it provides four samples that are the
product of F1 matings (an A x B F1 crossing with a C x D F1.)

Format

A tibble



GSP_opts 17

Details

For details on the columns, see the documentation for GSP.

Source

Created by the developers.

GSP_opts A list of tibbles specifying the pedigrees available from createGSP()

Description

This is a list that is used by the function createGSP(). There are 15 different genomic simulation
pedigrees, specified as tibbles, in this list.

Format

A list of 15 tibbles

Source

Written by package authors Rachael and Tim

I_meta Metadata for 78 individuals

Description

The tibble ’I_meta’ contains the Individuals IDs and group specifications for 78 individuals. Each
row of ’I_meta’ contains the metadata for an individual. ’I_meta’ has two columns, a ’group’
column with the group or population assignment for a given individual and an ’indiv’ column with
the individual sample IDs. The information in each column are stored as characters. The order of
the individual IDs corresponds to the genotypes found in Geno.

Format

A tibble with two columns: group and indiv.

Source

USDA-APHIS-WS-National Wildlife Research Center Feral Swine Genetic Archive



18 mat_scramble

mat_scramble Scramble a matrix of genotype data

Description

This function assumes that M is a matrix with L rows (number of markers) and 2 * N (N = number of
individuals) columns. There are two ways that the data might be permuted. In the first, obtained with
preserve_haplotypes = FALSE, the position of missing data within the matrix is held constant,
but all non-missing sites within a row (i.e. all gene copies at a locus) get scrambled amongst the
samples. In the second way, just the columns are permuted. This preserves haplotypes in the data, if
there are any. The second approach should only be used if haplotypes are inferred in the individuals.

Usage

mat_scramble(
M,
preserve_haplotypes = FALSE,
row_groups = NULL,
preserve_individuals = FALSE

)

Arguments

M a matrix with L rows (number of markers) and 2 * N columns where N is the
number of individuals. Missing data must be coded as NA

preserve_haplotypes

logical indicating whether the haplotypes set to be TRUE

row_groups if not NULL must be a list of indexes of adjacent rows that are all in the same
groups. For example: list(1:10, 11:15, 16:30). They should be in order
and complete. In practice, these should correspond to the indexes of markers on
different chromosomes.

preserve_individuals

logical indicating whether the genes within each individual should stay togeter.

Details

There is now an additional way of permuting: if preserve_individuals = TRUE, then entire in-
dividuals are permuted. If preserve_haplotypes = FALSE, then the gene copies at each locus
are randomly ordered within each individual before permuating them. If preserve_haplotypes
= TRUE then that initial permutation is not done. This should only be done if the individuals are
phased and that phasing is represented in how the genotypes are stored in the matrix.

Value

This function returns a matrix of the same dimensions and storage.mode as the input, M; however
the elements have been permuted according to the options specified by the users.



M_meta 19

Examples

# make a matrix with alleles named as I.M.g, where I is individual
# number, M is marker number, and g is either "a" or "b" depending
# on which gene copy in the diploid it is. 4 indivs and 7 markers...
Mat <- matrix(
paste(
rep(1:4, each = 7 * 2),
rep(1:7, 4 * 2),
rep(c("a", "b"), each = 7),
sep = "."

),
nrow = 7

)

# without preserving haplotypes
S1 <- mat_scramble(Mat)

# preserving haplotypes with markers 1-7 all on one chromosome
S2 <- mat_scramble(Mat, preserve_haplotypes = TRUE)

# preserving haplotypes with markers 1-3 on one chromosome and 4-7 on another
S3 <- mat_scramble(Mat, row_groups = list(1:3, 4:7))

# preserving individuals, but not haplotypes, with two chromosomes
S4 <- mat_scramble(Mat, row_groups = list(1:3, 4:7), preserve_individuals = TRUE)

# preserving individuals by chromosome, but not haplotypes, with two chromosomes
S5 <- mat_scramble(Mat, row_groups = list(1:3, 4:7), preserve_individuals = "BY_CHROM")

# preserving individuals by chromosome, and preserving haplotypes, with two chromosomes
S6 <- mat_scramble(Mat, row_groups = list(1:3, 4:7),

preserve_individuals = "BY_CHROM", preserve_haplotypes = TRUE)

M_meta Metadata for 100 molecular markers

Description

This data set contains the metadata for the 100 most divergent SNP loci for three feral swine pop-
ulations sampled in the United States. To make the dataset more computationally efficient, only 3
chromosomes were used (12,17, and 18). The metadata for the SNP loci is in a tibble with three
columns: chrom (character), pos (numeric), variant_id (character). The column ’chrom’ contains
the chromosome ID where the SNP is located, the column ’pos’ gives the base pair location on the
chromosome, and the column ’variant_id’ gives the name of the SNP. Each row of the metadata
tibble contains the metadata for a given SNP locus. The individual genotypes for each of these SNP
loci can be found in Geno.

Format

A tibble with three columns: chrom, pos, and variant_id.



20 perm_gs_by_pops

Source

Chromosome, position, and variant IDs are from the Sus scrofa 10.2 genome https://www.ncbi.
nlm.nih.gov/assembly/GCF_000003025.5/.

perm_gs_by_pops Take the output of rearrange_genos and permute everyone by popula-
tion

Description

This is done prior to assigning random genomic fragments of individuals in the sample to the
founders of the GSP, to be dropped to the samples.

Usage

perm_gs_by_pops(GS, preserve_haplotypes = FALSE, preserve_individuals = FALSE)

Arguments

GS the tibble that is the output from rearrange_genos
preserve_haplotypes

If TRUE then the Geno data is assumed phased (first allele at an individual on
one haplotype and second allele on the other) and those haplotypes are preserved
in this permutation of genomic material amongst the founders.

preserve_individuals

If TRUE then whole individuals are permuted around the data set and the two
gene copies at each locus are randomly permuted within each individual. If
preserve_individuals = "BY_CHROM", then the the two copies of each chro-
mosome in an individual are permuted together. Thus a permuted individual
may have two copies of one chromosome from one individual, and two copies
of another chromosome from a different individual. (If preserve_haplotypes
= TRUE then the gene copies are not permuted within individuals. You should
only ever use preserve_haplotypes = TRUE if you have phased data.)

Value

Returns a list of the same format as the output of rearrange_genos. Plus one additional com-
ponent. Each component of the return list is itself an unnamed list with one component (makes
it easier to use bind_rows to create a tibble of list columns from these). The components, once
unlisted are:

• G: a matrix—the original genotype data matrix

• I: the I_meta tibble

• M: the M_meta tibble

• G_permed: the genotype matrix after permutation.

https://www.ncbi.nlm.nih.gov/assembly/GCF_000003025.5/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000003025.5/


plink2gscramble 21

Examples

# first get the output of rearrange_genos
RG <- rearrange_genos(Geno, I_meta, M_meta)

# then permute by the populations
PG <- perm_gs_by_pops(RG)

plink2gscramble read plink-formatted .map and .ped files into ’gscramble’ format

Description

This will read .ped and .map files (which can be gzipped, but cannot be the binary .bed or .bim
plink format). The population specifier of each individual is assumed to be the first column (the
FID column) in the .ped file.

Usage

plink2gscramble(ped = NULL, map = NULL, prefix = NULL, gz_ext = FALSE)

Arguments

ped path to the plink .ped file holding information about the individuals and their
genotypes. This file can also be gzipped. The function assumes that the second
column of this file is unique across all family IDs. If this is not the case, the
function throws a warning. It is assumed that missing genotypes are denoted by
0’s in this file.

map path to the plink .map file holding information about the markers. This file can
be gzipped

prefix If map and ped are not given as explicit paths to the file, you can give the prefix,
and it will search for the two files with the .ped and .map extensions on the end
of the prefix.

gz_ext Logical. If TRUE, and specifying files by prefix, this will add a .gz extension to
the map and ped files.

Value

A list with three components:

• I_meta: meta data about the individuals in the file. This will include the columns of group
(value of the first column of the ped file) and indiv (the ID of the individual stored in sec-
ond column of the ped file). And wil also include the other four columns of the plink ped
specification, named as follows: pa ma, sex_code, pheno.

• M_meta: meta data about the markers. A tibble with the columns chrom, pos, and variant_id
and link_pos. The link_pos column holds the information about marker position in Morgans
or cM that was included in the map file.

• Geno: a character matrix of genotypes with number-of-indviduals rows and number-of-markers
* 2 columns. Missing genotypes in this matrix are coded as NA.



22 plink_map2rec_rates

Examples

ped_plink <- system.file("extdata/example-plink.ped.gz", package = "gscramble")
map_plink <- system.file("extdata/example-plink.map.gz", package = "gscramble")

result <- plink2gscramble(ped_plink, map_plink)

plink_map2rec_rates Convert a PLINK map file to ’gscramble’ RecRates bins in a tibble

Description

This is a convenience function to convert PLINK map format to the format used in the ’gscramble’
RecRates object. By default, this function will use the positions of the markers and assume recom-
bination rates of 1 cM per megabase. If the marker positions are also available in Morgans in the
PLINK map file, the these can be used by setting use_morgans to TRUE.

Usage

plink_map2rec_rates(
map,
use_morgans = FALSE,
cM_per_Mb = 1,
chrom_lengths = NULL

)

Arguments

map path to the plink .map file holding information about the markers. This file can
be gzipped.

use_morgans logical. IF true, the third column in the PLINK map file (assumed to have the
position of the markers in Morgans) will be used to calculate the rec_probs in
the bins of the RecRates object.

cM_per_Mb numeric. If use_morgans is FALSE, physical positions will be converted to re-
combination fractions as cM_per_Mb centiMorgans per megabase. Default is 1.
This is also used to determine the recombination probability on the last segment
of the chromosome (beyond the last marker) if chrom_lengths is used.

chrom_lengths if you know the full length of each chromosome, you can add those in a tibble
with columns chrom and bp where chrom must be a character vector (Don’t
leave them in as numerics) and bp must be a numeric vector of the number of
base pairs of length of each chromosome.

Details

For simplicity, this function will assume that the length of the chromosome is just one base pair
beyond the last marker. That is typically not correct but will have no effect, since there are no
markers to be typed out beyond that point. However, if you know the lengths of the chromosomes
and want to add those in there, then pass them into the chrom_lengths option.



plot_simulated_chromomsome_segments 23

Value

A tibble that provides the recombination rates for the segments of the genome.

Examples

mapfile <- system.file(
"extdata/example-plink-with-morgans.map.gz",
package = "gscramble"

)

# get a rec-rates tibble from the positions of the markers,
# assuming 1 cM per megabase.
rec_rates_from_positions <- plink_map2rec_rates(mapfile)

# get a rec-rates tibble from the positions of the markers,
# assuming 1.5 cM per megabase.
rec_rates_from_positions_1.5 <- plink_map2rec_rates(

mapfile,
cM_per_Mb = 1.5

)

# get a rec-rates tibble from the cumulative Morgans position
# in the plink map file
rec_rates_from_positions_Morg <- plink_map2rec_rates(

mapfile,
use_morgans = TRUE

)

# get a rec-rates tibble from the cumulative Morgans position
# in the plink map file, and extend it out to the full length
# of the chromosome (assuming for that last part of the chromosome
# a map of 1.2 cM per megabase.)
rec_rates_from_positions_Morg_fl <- plink_map2rec_rates(

mapfile,
use_morgans = TRUE,
cM_per_Mb = 1.2,
chrom_lengths = example_chrom_lengths

)

plot_simulated_chromomsome_segments

Plot the simulated chromosomes of an individual

Description

This function uses the information in the tibble about segments dropped down a genome simulation
pedigree to plot the chromomomes of an individual colored by the population of origin of each
segment.



24 plot_simulated_chromomsome_segments

Usage

plot_simulated_chromomsome_segments(
Segs,
RR = NULL,
fill_by_group_origin = FALSE,
rel_heights = c(chrom_ht = 4, chrom_gap = 0.8, spark_gap = 0.2 * !is.null(RR),

spark_box = 2.6 * !is.null(RR), unit_gap = 4),
bottom_gap = 0.3,
spark_thick = 0.2,
spark_splat = 0.25

)

Arguments

Segs a tibble of segments

RR a tibble of recombination rates in bins in the format of RecRates. If this is
included, the recombination rates in cM/Mb are plotted atop the chromosomes
as a little sparkline. If it is not included, then the there are no little sparklines
above the chromosomes.

fill_by_group_origin

If FALSE (the default) the fill color of segments is mapped to the pop_origin,
which is where the founder haplotypes came from according to the hpop1 and
hpop2 columns in the GSP specification. If you set this to TRUE, then we map
the "group" column of the reppop to fill.

rel_heights a vector the the relative heights of the different elements of each chromosomal
unit of the plot. This is a named vector with the following elements, listed in
order of the bottom of each unit to the top:

• chrom_ht: the height of the bars for each of the two chromosomes of the
pair in a chromosome unit.

• chrom_gap: The gap between the two homologous chromosomes of the
individual.

• spark_gap: the gap between the top chromosome and the sparkline box for
recombination rates.

• spark_box: height of the box within which the sparkline goes. Note that
the sparkline itself will be scaled so that the highest rate anywhere within
the genome will correspond to the top of the spark box.

• unit_gap: The relative height of the gap between one chromosome unit
and the next.

bottom_gap the y value of the bottom chromosome unit. Basically the absolute distance
between the y=0 line and the start of the plotted material. Should typically be
between 0 and 1.

spark_thick thickness of the line that draws the recombination rate sparkline.

spark_splat fraction by which the unit gap should be reduced when there are sparklines being
drawn.



prep_gsp_for_hap_dropping 25

Value

This function returns a ggplot object. Each facet of the plot shows the chromosomes of a differ-
ent sampled individual from a particular replicate simulation from a particular genome simulation
pedigree. The facets are titled like: GSP 1, Idx 2, ID 8[3], which means that the chromosomes
shown in the panel are from the third sampled set of chromosomes from the individual with ID 8
from the simulation from genome simulation pedigree 1 with index 2.

Examples

s <- example_segments
rr <- RecRates
g <- plot_simulated_chromomsome_segments(s)
g_with_sparklines <- plot_simulated_chromomsome_segments(s, rr)

prep_gsp_for_hap_dropping

Take a gsp in tibble form and make a list suitable for gene dropping

Description

Just a simple function that makes a list-based data structure that makes it easy to gene-drop chro-
mosome segments down the gsp. The basic idea is to get everyone into a data structure in which
they are ordered such that by the time you get to segregating segments from anyone, you already
have the segments segregated into them. This works by each individual having a list of gametes
(post-recombination) coming out of them, and a list of "uniters" which are the gametes coming into
them. We just point the uniters to gametes in the previous generation and then make sure that we
shuffle the order of the gametes when they come out of someone.

Usage

prep_gsp_for_hap_dropping(gsp)

Arguments

gsp A tibble that holds the genome simulation pedigree (GSP). This is a tibble in
which each row specifies an individual in the GSP. The columns of the tibble
are:

• ind: a numeric identifier for that row’s indvidual.
• par: the numeric ID of the first parent of the individual (NA if the individual

is a founder of the pedigree).
• par2: the numeric ID of the second parent of the individual (NA if the

individual is a founder)
• ipar1: the number of gametes that par1 must segregate "through" ind in

order to exhaust all the genetic material in the GSP. These values are given
by the red numerals alongside the edge connecting parents to offspring in
the GSP images defined by gsp2dot(). See the vignette gscramble-tutorial,
for an example. (NA if ind is a founder).



26 prep_gsp_for_hap_dropping

• ipar2: the number of gametes that par2 must segregate through ind. (NA
if ind is a founder).

• hap1: a unique character label given to the first haplotype in ind if ind is a
founder. If ind is not a founder, this must be NA.

• hap2: unique character label given to the second haplotype in ind. NA if
ind is not a founder.

• hpop1: character label giving the population of origin of the first haplotype
(i.e., hap1) in ind, if ind is a founder. NA otherwise.

• hpop2: character label giving the population of origin of the second haplo-
type (i.e., hap2) in ind. NA if ind is not a founder.

• sample: unique character label for the outcoming diploid sample from the
pedigree member ind. NA if ind is not sampled.

• osample: the number of diploid samples that come out of ind. NA if ind
is not sampled.

Value

This function returns a named list, which is a linked-list type of structure that contains the same
information that is in gsp, but it makes it easier to access when traversing the pedigree.

The length of the list is nrow(gsp). The names are the character versions of the ind column. Each
component of the list refers to an individual row from gsp. All of these list elements are themselves
lists. (i.e., the information about a single individual is stored in a list.) Every such individual list
has at least the two elements:

• isSample: TRUE if samples are taken from the individual. FALSE otherwise.

• isFounder: TRUE if the individual is a founder. FALSE otherwise.

• nGamete: The total number of gametes that will be segregated out of this individual along
edges to the offspring of the individual in the pedigree. This is the sum of all the red numbers
alongside edges below the individual in the GSP.

If an individual’s isSample is TRUE, then its list also contains the following elements:

• nSamples: the number of diploid genomes sampled out of this individual. This is the purple
number along the edge to the sample node below the individual in the GSP "picture".

If an individual’s, isFounder is TRUE then its list also contains the following elements:

• hpop1: the population from which haplotype 1 in this (founder) individual originated.

• hpop2: the population from which haplotype 2 in this (founder) individual originated.

• fh_idx1: this stands for "founding haplotype index 1. It is a unique integer that identifies
haplotype one in this founder individual. This integer is unique over all haplotypes in all the
founder individuals.

• fh_idx2’ the unique integer identifier for haplotype two in this founder individual.

If an individual’s isFounder is FALSE, then its list also contains the following elements:

• par1 and par2. Each of these is a list with the elements:



rearrange_genos 27

– par: the character identifier of the first (if in par1) of the second (if in par2) parent of
the individual.

– gam_idx: This tells us which of the gametes in the parent (1 or 2) depending on if this is
in par1 or par2, gets segregated to the individual. NEED TO EXPLAIN MORE. SINCE
THINGS GET PERMUTED, ETC.

Examples

# get the 13 member complex pedigree in tibble form as the
# package data object GSP and prep it:
GSP_list <- prep_gsp_for_hap_dropping(GSP)

rearrange_genos rearrange genotypes into separate columns for each haplotype.

Description

This function first reorders individuals in the columns of the matrix so that every population is
together. Then it rearranges genotypes into separate columns for each haplotype (or "halflotype" if
they are unphased.) This prepares the matrix for different kinds of a permutation (within or between
populations, for example).

Usage

rearrange_genos(G, Im, Mm)

Arguments

G the genotype matrix (N rows and 2L columns)

Im the meta data for the N samples.

Mm the meta data for the L markers.

Details

It returns a list. One component is the matrix, another is the updated individual meta data, and the
third is the marker meta data.

Value

Returns a list. Each component of the return list is itself an unnamed list with one component
(makes it easier to use bind_rows to create a tibble of list columns from these). The components,
once unlisted are:

• G: a matrix—the rearranged genotype data matrix

• I: the I_meta tibble

• M: the M_meta tibble



28 recomb_point

Examples

RG <- rearrange_genos(Geno, I_meta, M_meta)

recomb_point Randomly sample the positions of recombinations on a chromosome

Description

This function uses the observed recombination fractions such as those in the data object RecRates.
These are observed recombination fractions in a series of adjacent small bins that are defined by
a start position start_pos and ending position end_pos. This function operates on the recombi-
nation rates for only a single chromosome at a time, so it will typically be wrapped up inside a
purrr::map() function to operate over multiple chromosomes.

Usage

recomb_point(M, at_least_one = TRUE)

Arguments

M a tibble that has the columns start_pos, end_pos, and rec_prob (where rec_prob
is the probability of a recombination occurring during meiosis within the interval
defined by start_pos and end_pos.

at_least_one if this is TRUE then at least one recombination occurs on every chromosome
(see Details). If FALSE then the total number of recombinations is simulated as
a Poisson r.v. with mean equal to the sum of the recombination fractions.

Details

There are two main modes by which this function operates. If at_least_one == TRUE, then the
chromosome will always have at least one recombination. In this case, the position of that first
recombination is chosen according to the recombination rates. Subsequently, the remaining number
of recombinations is chosen by the random variable Y, which is the greater of zero and X - 1, where
X is a Poisson r.v. with mean given by the sum of the recombination fractions. These additional
recombinations are placed randomly according to the rec_probs but without interference.

If at_least_one == FALSE then the total number of recombinations is simulated as a Poisson r.v.
with mean equal to the sum of the recombination fractions. Again, their placement assumes no
interference.

Locations within each bin are chosen uniformly. These locations are represented as real numbers
(rather than as integers) and those are used for describing segments, as well. This simplifies matters
such as condensing information about multiple recombinations that occurred at the same base pair.
In practice, this will have negligible effects, since it is so unlikely that a recombination will ever
occur in the same place.

If no recombination occurs, this just returns a zero-length numeric vector.



RecRates 29

Value

Returns a numeric vector of recombination breakpoints along the chromome. The values are sorted
in ascending order.

Examples

# for an example, create a tibble of bins, roughly 1 Mb each,
# on a chromosome of length roughly 150 Mb, and we assign each
# a rec_prob around 0.01
ends <- seq(1e6, 150e6, by = 1e6)
ends <- ends + floor(runif(length(ends), min = -1e4, max = 1e4))
set.seed(5)
M <- tibble::tibble(

start_pos = c(0, ends[-length(ends)] + 1),
end_pos = ends,
rec_prob = abs(rnorm(length(ends), 0.01, 0.004))

)
recomb_point(M)

RecRates Recombination rate data for many roughly 1 Mb bins

Description

Chromosome, start position and end position and probability of recombination within the bin for
chromosomes in pigs.

Format

A tibble with four columns: chrom, chrom_len, start_pos, end_pos, and rec_prob.

Source

These rates were estimated in: Tortereau, Flavie, et al. "A high density recombination map of the
pig reveals a correlation between sex-specific recombination and GC content." BMC genomics 13.1
(2012): 1-12. It is available for download from https://static-content.springer.com/esm/
art%3A10.1186%2F1471-2164-13-586/MediaObjects/12864_2012_4363_MOESM1_ESM.txt. Af-
ter downloading the data were processed to remove inconsistencies with the marker data set used
for M_meta and Geno.

https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-13-586/MediaObjects/12864_2012_4363_MOESM1_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-13-586/MediaObjects/12864_2012_4363_MOESM1_ESM.txt


30 RepPop1

renumber_GSP Renumber GSP members by adding a constant to each

Description

This function assumes that all individuals are named as numerics and that their haplotypes in hap1
and hap2 are named Xa and Xb,respectively, and their samples are named sX, where X is an integer,

Usage

renumber_GSP(G, add)

Arguments

G a GSP tibble
add amount to add to each label

Value

Returns a GSP just like the input, but with the identity numbers of the individuals in it incremented
by add.

Examples

# get an example GSP
G <- create_GSP(pop1 = "p1", pop2 = "p2", F1B2 = TRUE)

RepPop1 A simple example of a reppop table

Description

A reppop table in ’gscramble’ is used to define how the founder populations in a GSP (typically
named something like "A", "B", etc.) are mapped to the groups/populations of individuals, as
specified in the individual meta data (an example of which is found in I_meta).

Format

A tibble with three columns: index, which must be of type integer, pop, and group of type character.

Details

This particular version shows a situation where individuals from group Pop1 will be sampled as
founders from A and from group Pop2 will be sampled as founders from B into the GSP. Since this
RepPop1 example has two values of index: 1 and 2, it specifies that individuals from the populations
will be sampled without replacment, two times into the founders on the pedigree.



RepPop4 31

Source

The developers created this.

RepPop4 Another simple example of a reppop table

Description

A reppop table in ’gscramble’ is used to define how the founder populations in a GSP (typically
named something like "A", "B", etc.) are mapped to the groups/populations of individuals, as
specified in the individual meta data (an example of which is found in I_meta).

Format

A tibble with three columns: index, which must be of type integer, pop, and group of type character.

Details

This particular version shows a situation where individuals from four different groups (Pop1, Pop2,
Pop3, and Pop4) get mapped to four different founder groups (A, B, C, D) in the GSP. Since this
RepPop4 example has three values of index: 1, 2, and 3, it specifies that there will be three rounds
of sampling of individuals from the populations to be the founders on the pedigree. That will be
done entirely without replacement (individuals are not replaced after each round!)

Source

The developers created this.

seg2tib Takes a gamete in segment format and returns a tibble with Pop and
indiv_index

Description

A small helper function.

Usage

seg2tib(s)

Arguments

s a gamete in segment format



32 segments2markers

Value

Returns a tibble with columns tmp_seg_names, start, and end, that show the origin (in tmp_seg_names)
of segments that start at start and end at end.

Examples

# first make a segment that has pieces from a few different founders
V <- c(Amy = 0, Bob = 10000, Joe = 30000, Frieda = 40000)
seg2tib(V)

segments2markers Map alleles from scrambled founders to the sampled segments from a
GSP.

Description

Map alleles from scrambled founders to the sampled segments from a GSP.

Usage

segments2markers(
Segs,
Im,
Mm,
G,
preserve_haplotypes = FALSE,
preserve_individuals = FALSE

)

Arguments

Segs the simulated segments. A tibble like that returned from segregate().

Im the individual meta data, like that in I_meta. A tibble with columns group and
indiv.

Mm the marker meta data formatted like that in M_meta. A tibble with columns
chrom, pos, and variant_id.

G the marker genotype data as a matrix like Geno. This is a character matrix. Each
row is an individual, and each pair of columns are the alleles at a locus. Thus it
is N x 2L where N is the number of individuals and L is the number of markers.

preserve_haplotypes

If TRUE then the Geno data is assumed phased (first allele at an individual on
one haplotype and second allele on the other) and those haplotypes are preserved
in this permutation of genomic material amongst the founders.



segments2markers 33

preserve_individuals

If TRUE then whole individuals are permuted around the data set and the two
gene copies at each locus are randomly permuted within each individual. If
preserve_individuals = "BY_CHROM", then the the two copies of each chro-
mosome in an individual are permuted together. Thus a permuted individual
may have two copies of one chromosome from one individual, and two copies
of another chromosome from a different individual. (If preserve_haplotypes
= TRUE then the gene copies are not permuted within individuals. You should
only ever use preserve_haplotypes = TRUE if you have phased data.)

Value

A list with three components:

• ret_geno: A character matrix where each row is an individual and each pair of columns are
the alleles at a locus, thus it is N x 2L where N is the number of individuals and L is the
number of markers.

• ret_ids: A tibble providing the individual meta data with columns groups and indiv.
• hyb_Qs: A tibble of the admixture Q values.

Examples

#### First, get input segments for the function ####
# We construct an example here where we will request segregation
# down a GSP with two F1s and F1B backcrosses between two hypothetical
# populations, A and B.
set.seed(5)
gsp_f1f1b <- create_GSP("A", "B", F1 = TRUE, F1B = TRUE)

# We will imagine that in our marker data there are three groups
# labelled "Pop1", "Pop2", and "Pop3", and we want to create the F1Bs with backcrossing
# only to Pop3.
reppop <- tibble::tibble(

index = as.integer(c(1, 1, 2, 2)),
pop = c("A", "B", "A", "B"),
group = c("Pop3", "Pop1", "Pop3", "Pop2")

)

# combine those into a request
request <- tibble::tibble(

gpp = list(gsp_f1f1b),
reppop = list(reppop)

)

# now segegate segments. Explicitly pass the markers
# in M_meta so that the order of the markers is set efficiently.
segs <- segregate(request, RecRates, M_meta)

#### Now, use segs in an example with segments2markers() ####
# this uses several package data objects that are there for examples
# and illustration.
s2m_result <- segments2markers(segs, I_meta, M_meta, Geno)



34 segregate

segregate Segregate segments down genomic simulation pedigrees

Description

Given a collection of genomic simulation pedigrees and requests for how many simulations should
be done (in the request input), as well as recombination rates, this simulates the segregation of
segments down through the pedigrees

Usage

segregate(request, RR, MM = NULL)

Arguments

request a tibble with list columns "gpp" and "reppop". Each element of the gpp column
is a tibble giving a genomic simulation pedigree as documented as the input
for prep_gsp_for_hap_dropping(). Each element of the "reppop" column is
a tibble with columns index, pop, group, to indicate which of the founding
populations ("A", "B", etc.) correspond to the different groups (from the group
column in, for example, the meta data for individuals in your genotype data set,
like the data object I_meta). Because it is quite likely that you might wish to
iterate the segregation procedure multiple times in a single simulation, you can
specify that by doing multiple "reps" (replicates) of the procedure. BIG NOTE:
The values in the index column that you choose must start at 1 and should be
dense within. In other words, if the max value in the index column is N, then
every integer from 1 to N must be in there.

RR the recombination rates in the format of the package data

MM the marker meta data tibble (like M_meta). If this is NULL (the default) that
is fine. If not, then it uses the order of the markers in MM to define the levels
of a chrom_f column so that we can sort the rows of the output correctly, with
respect to markers in the Genotype data frame. This will let us more efficiently
subscript the markers out of the matrix. If MM is not present, then the function
will create chrom_f by using the order of the chromosomes from RR. If MM is
not NULL, then the function will also check to make sure that the markers are
within the extent of the recombination rate bins, giving an error otherwise.

Value

The output from this function is a tibble. Each row represents one segment of genetic material
amongst the sampled individuals from the genomic permutation pedigrees. The columns give in-
formation about the provenance and destination of that segment as follows. Each segment exists in
one of the samples (samp_index) from a sampled individual with a ped_sample_id on a given gpp
(the index giving the row of the request input tibble) in a given index within the individual. Further,
it is on one of two gametes (gamete_index) that segregated into the individual, and it came from
a certain founding population (pop_origin) that corresponds to the named groups in the genotype
file (group_origin). And, of course, the segment occupies the space from start to end on a



sim_level_founder_haplos 35

chromosome chrom. Finally, the index of the founder haplotype on the given gpp that this sege-
ment descended from is given in rs_founder_haplotype which is short for "rep-specific founder
haplotype". This final piece of information is crucial for segregating variation from the individuals
in the Geno file onto these segments. Finally, the column sim_level_founder_haplo assigns a
unique index for each founder haplotype. This is necessary because any simulation can involve
multiple gpps and/or indexes of gpps, and the founders in each of those must all be unique within
a simulation. so that those haplotypes can all, eventually, be accessed easily out of the genotype
matrix.

Examples

# We construct an example here where we will request segregation
# down a GSP with two F1s and F1B backcrosses between two hypothetical
# populations, A and B.
gsp_f1f1b <- create_GSP("A", "B", F1 = TRUE, F1B = TRUE)

# We will imagine that in our marker data there are three groups
# labelled "grp1", "grp2", and "grp3", and we want to create the F1Bs with backcrossing
# only to grp3.
reppop <- tibble::tibble(

index = as.integer(c(1, 1, 2, 2)),
pop = c("A", "B", "A", "B"),
group = c("grp3", "grp1", "grp3", "grp2")

)

# combine those into a request
request <- tibble::tibble(

gpp = list(gsp_f1f1b),
reppop = list(reppop)

)

result1 <- segregate(request, RecRates)

# here we pass it some markers, too
result2 <- segregate(request, RecRates, M_meta)

result1

result2

sim_level_founder_haplos

computes the simulation-level founder haplotype index for each
founder haplo

Description

This takes the output of segregate() and deals with the multiple gpp’s and reps to come up with
a unique index for each found haplotype, so that those haplotypes can all, eventually, be accessed



36 sim_level_founder_haplos

easily out of the genotype matrix. Along the way, this function does some light checking to make
sure that the rs_founder_haplo values are dense within gpp and index as they should be.

Usage

sim_level_founder_haplos(S)

Arguments

S tibble of segments like that produced by segregate.

Value

This function returns a result that is basically the output of segregate() with an additional col-
umn added to it: sim_level_founder_haplo. This is the index of the haplotype within each
group_origin that should be used. For details of the other columns in the output tibble, see the
documentation for segregate.

Examples

#### Get output from segregate to use as input ####
# We construct an example here where we will request segregation
# down a GSP with two F1s and F1B backcrosses between two hypothetical
# populations, A and B.
gsp_f1f1b <- create_GSP("A", "B", F1 = TRUE, F1B = TRUE)

# We will imagine that in our marker data there are three groups
# labelled "grp1", "grp2", and "grp3", and we want to create the F1Bs with backcrossing
# only to grp3.
reppop <- tibble::tibble(

index = as.integer(c(1, 1, 2, 2)),
pop = c("A", "B", "A", "B"),
group = c("grp3", "grp1", "grp3", "grp2")

)

# combine those into a request
request <- tibble::tibble(

gpp = list(gsp_f1f1b),
reppop = list(reppop)

)

# now run it through segregate()
set.seed(5) # just for reproducibility in example...
simSegs <- segregate(request, RecRates)

#### Now we can run those through sim_level_founder_haplos() ####
fh <- sim_level_founder_haplos(simSegs)
fh



xover 37

xover internal function to do crossovers and create recombinations

Description

This function doesn’t choose the recombination points. That is done with the function recomb_point(),
and the results are passed into this function. The two inputs V1 and V2 represent the two gametes
coming into an individual on the pedigree. Recombination occurs within that individual, and the
two resulting gametes from that recombination are the output. Typically this is not the way things
happen, of course. Generally, only one of the two resulting gametes from the recombination will
be segregated to a surviving offspring. But, since we are interested in segregating genetic mate-
rial without duplicating or destroying any of it, we keep track of both gametes that result from the
meiosis/recombination.

Usage

xover(V1, V2, R)

Arguments

V1 integer vector of recombination points already existing on the first incoming
gamete. Its names are the names of the founder haplotype that the left end
originates from (i.e. it is from the named haplotype up until it changes at each
point). For example c(A = 0, B = 12890, B = 30000) would work for a 30
Kb chromosome in which there is a single recombination just to the right of
the point 12890. (In that example, positions 1 through 12890 are from founder
haplotype A, while positions 12891 to 30000 are from founder haplotype B.)
Note that these vectors have to have a first value of 0 and a final value of the
chromosome length.

V2 integer vector of breakpoints of the second incoming gamete. Format is just like
it is for V1.

R a vector of new breakpoints to insert into the existing ones on each gamete. This
is usually returned from the function recomb_point().

Value

This sends back two updated gametes, V1 and V2, but with the new points of recombination stuck
in there. Note, for two incoming gametes there are two outgoing gametes, but we aren’t "re-using"
any genomic sequence.

Examples

#' # make the two gametes/chromosomes coming into the function.
#' # Each one has length 30000 and a single existing recombination
V1 <- c(A = 0, B = 10000, B = 30000)
V2 <- c(C = 0, D = 20000, D = 30000)



38 xover

# now, set a new recombination point at position 15000
xover(V1, V2, R = 15000)

# set three recombination points at 5,000, 15,000, and 25,000:
xover(V1, V2, R = c(5000, 15000, 25000))

# no recombinations (R is a zero length numeric vector)
xover(V1, V2, R = numeric(0))



Index

check_chrom_lengths, 2
check_gsp_for_validity_and_saturation,

3
check_pedigree_for_inbreeding, 4
computeQs_from_segments, 6
create_GSP, 7

drop_segs_down_gsp, 9

example_chrom_lengths, 10
example_segments, 10

Geno, 11, 17, 19, 32
gscramble2newhybrids, 11
gscramble2plink, 13
GSP, 9, 13, 16, 17
gsp2dot, 14
gsp3, 16
gsp4, 16
GSP_opts, 17

I_meta, 11, 17, 32

M_meta, 11, 19, 32
mat_scramble, 18

perm_gs_by_pops, 20
plink2gscramble, 21
plink_map2rec_rates, 22
plot_simulated_chromomsome_segments,

23
prep_gsp_for_hap_dropping, 25

rearrange_genos, 27
recomb_point, 28
RecRates, 9, 24, 28, 29
renumber_GSP, 30
RepPop1, 30
RepPop4, 31

seg2tib, 31

segments2markers, 32
segregate, 6, 34, 36
segregate(), 32
sim_level_founder_haplos, 35

xover, 37

39


	check_chrom_lengths
	check_gsp_for_validity_and_saturation
	check_pedigree_for_inbreeding
	computeQs_from_segments
	create_GSP
	drop_segs_down_gsp
	example_chrom_lengths
	example_segments
	Geno
	gscramble2newhybrids
	gscramble2plink
	GSP
	gsp2dot
	gsp3
	gsp4
	GSP_opts
	I_meta
	mat_scramble
	M_meta
	perm_gs_by_pops
	plink2gscramble
	plink_map2rec_rates
	plot_simulated_chromomsome_segments
	prep_gsp_for_hap_dropping
	rearrange_genos
	recomb_point
	RecRates
	renumber_GSP
	RepPop1
	RepPop4
	seg2tib
	segments2markers
	segregate
	sim_level_founder_haplos
	xover
	Index

